对于论文Convolutional neural network based multiple-rate compressive sensing for massive MIMO CSI feedback: Design, simulation, and analysis网络结构的实现 只实现了其中CsiNet+的部分,对于论文的重点SM-CsiNet+和PM-CsiNet+可能会在以后实现。
- 使用更大的卷积核,其实最主要的还是追求更大的感受野(尤其是在outdoor场景和高CR的情况下,需要更多的全局信息)
- 移除了decoder后面的卷积层,因为RefineNet的输出结果足够恢复CSI,加上一层卷积层反而会是结果更差(作者是这样解释的,并没有做消融实验)
[1]C. Wen, W. Shih and S. Jin, “Deep Learning for Massive MIMO CSI Feedback,” IEEE Wireless Communications Letters, vol. 7, no. 5, pp. 748-751, Oct. 2018
[2]J. Guo, C.-K. Wen, S. Jin, and G. Y. Li, “Convolutional neural network based multiple-rate compressive sensing for massive MIMO CSI feedback: Design, simulation, and analysis,” arXiv preprint arXiv:1906.06007, 2019